
ACTIFSOURCE GMBH 

Actifsource CIP 
Language Workbench Challenge 2012 

 

  

  

 

 

 

  

This paper shows the Actifsource CIP solution of the language workbench challenge 2012 assignment. 
Keywords: Domain-specific language, Model-driven development 



1 
 

Contents 
Assignment ............................................................................................................................................. 2 

Introduction: The Actifsource CIP tool .................................................................................................. 3 

The CIP methodology ......................................................................................................................... 3 

1. DSL for Piping and Instrumentation ................................................................................................... 4 

2. Instantiation of DSL elements ............................................................................................................ 4 

Input Channels for the Sensors .......................................................................................................... 8 

Output Channels for the Actors ......................................................................................................... 9 

The CentralHeating Cluster .............................................................................................................. 10 

Communication ................................................................................................................................ 11 

3. Intuitive P&I network ....................................................................................................................... 12 

Model the interaction between the elements ................................................................................. 12 

The communication inside the cluster ............................................................................................. 12 

Custom display ................................................................................................................................. 15 

4. The control behavior ........................................................................................................................ 15 

The Burner process .......................................................................................................................... 15 

The Gas Valve process ...................................................................................................................... 16 

The Water Valve process .................................................................................................................. 16 

The Pump process ............................................................................................................................ 16 

The Radiator process ........................................................................................................................ 16 

The Boiler process ............................................................................................................................ 16 

5. Constraint definitions ...................................................................................................................... 16 

Requirements ................................................................................................................................... 18 

6. Stubs ................................................................................................................................................. 19 

7. Generate control code ..................................................................................................................... 19 

Summary .............................................................................................................................................. 20 

 

  



2 
 

Assignment 
The assignment of the language workbench challenge 2012 can be found at 

http://www.languageworkbenches.net/index.php?title=LWC_2012#The_assignment. The goal is to 

show the capabilities of the tool by designing a meta-model for piping and instrumentation chart, 

and to implement an example including control logic design.  

http://www.languageworkbenches.net/index.php?title=LWC_2012#The_assignment


3 
 

Introduction: The Actifsource CIP tool 
This article describes, how the problem of the assignment is solved using the CIP Edition of 

Actifsource. 

Actifsource is a modeling tool and code generator that is integrated into the Eclipse IDE. For general 

information of the tool, visit our webpage www.actifsource.com. For information, how concrete 

tasks are solved, read the tutorials provided or look in our contribution to the Language Workbench 

Challenge 2011. 

The CIP Edition is still under development and will be released this summer. It contains the CIP 

meta-model, several specific editors and templates to generate code for embedded systems. CIP 

stands for Communicating Interacting Processes – a methodology developed in the 90’s at the ETH 

Zürich by Prof. Dr.Hugo Fierz for the design of complex embedded systems. The systems developed 

are characterized by their reliability, robustness and flexibility. And it has been shown, that over the 

whole software life-cycle, the expenses for development and maintenance can be reduced by 50% 

compared to conventional embedded software development. 

Actifsource CIP generates C,C++, or Java code. In the past, those languages were not supported by 

most PLC tool chains – except B&R Automation Studio. Beckhoff TwinCAT – the tool recommended 

by the assignment – will support them in the new version 3 that will be released soon (in 2012). 

We focused on the design of the control logic of embedded system, not on the stack that is 

necessary to get the system running on the PLC. The meta-model of the CIP methodology is fully 

accessible to the programmer, so the system can easily be extended with custom templates that 

generate the required binding code and mocks for simulation and visualization. 

The CIP methodology 

The general aim of the CIP methodology is to structure the embedded system the same way as the 

physical system and to connect the physical engines with their embedded counterparts by message 

channels. 

According to the CIP methodology, embedded systems are designed as reactive components: They 

consist of a number of cooperating extended state machines called Processes. External events are 

communicated as event messages to the processes, and the Processes themselves communicate via 

messages to the extern. 

Internally, processes can also communicate synchronously if they belong to the same process group 

called Cluster. For every Cluster, the incoming event messages are processed sequentially. There 

are different types of synchronous communication: Pulse is the equivalent to a message. The 

information about the current states of the other processes in the cluster by the definition of so 

called Gates, that evaluate to true for certain state combinations. And further state inspection is 

performed via Inquiries. 

The transitions of the state machines can be exchanged completely by defining different Modes. 

The current mode is defined similarly to Gates, by mapping state combinations to a process mode. 

http://www.actifsource.com/


4 
 

1. DSL for Piping and Instrumentation 
As explained before, we will focus on the functionality of the system and show how the problem is 

solved using the CIP methodology. CIP already defines its own DSL: 

There are processes, grouped by clusters, and message channels, grouped by channel categories. 

The model of the control behavior differs notably from the model of a piping and instrumentation 

drawing. And, besides some correlation of the elements, there is no obvious method to 

automatically transform a P&I drawing into a control program. 

So, in order to get a system working properly, the order must be, to define and model the function 

of the system first, and then in a second step, implement that system using the P&I elements that 

meet the requirements. 

We decided to focus on the control behavior of the system, not the actual topology. If you are 

interested in designing a DSL for P&I drawings, look in our contribution of last year’s LWC or in the 

tutorials.  

2. Instantiation of DSL elements 
Actifsource CIP lets you instantiate the elements in a graphical way. 

Let’s start with a new actifsource Project: 

 



5 
 

Choose a name for the project, and optionally a specific project location. 

 

Make sure there is the built-in dependency to the CIP extension set. 

 

Press Finish. 

Now, create a new CIP System in the asrc Directory. 



6 
 

      

 

 

Open a new Communication Subnet in the Domain Diagram Editor: Processes and Channels are 

instantiated in the Domain Diagram Editor using the Resource Tool. 

First, let us create a new ChannelCategory Sensors – a container, where we will create an 

InputChannel for every Sensor in the model. 



7 
 

 

Select the Resource Tool from the Palette and click into the diagram area. You are asked for the 

Resource type and name.  

 

 



8 
 

 

Second, we need a Cluster CentralHeating for the control logic. 

This is done in the same way as the channel categories. 

Third, the ChannelCategory Actors has to be created for the OutputChannels that deliver the 

commands to the extern. 

You will get the following system: 

 

Input Channels for the Sensors 

We represent the sensors of the P&I network as (stateless) InputChannels. 

Select the Resource tool again and click into the Sensors ChannelCategory  to create the 

representations. 



9 
 

 

You are asked for names. Create a Channel for the WaterFlowSensor (F1), BoilerTemperatureSensor 

(T2), PumpSpeedSensor (S3), IgnitionTemperatureSensor (T4), BurnerTemperatureSensor (T5) 

WaterTemperatureSensor (T6) and there must be a RoomTemperatureSensor (T7). 

Output Channels for the Actors 

We can identify the following actors in the system: The WaterValve (V1), Pump (P1) Ignition, and 

the GasValve (V2). 

Create a Channel for every of those actors. 



10 
 

 

The CentralHeating Cluster 

In our example, we identify the following Processes: Boiler and Radiator on the client side, Burner, 

Gas Valve, Pump and Water Valve on the server side. Additionally, we add a Contoller process that 

implements the behavior of the overall system, that cannot be distributed to a single process 

without customizing that process to this specific application. 

We put all processes into the same cluster, meaning they communicate synchronously with each 

other. 



11 
 

 

Communication 

You can connect the Processes with the respective input or output channel by clicking on the 

Process and then on the Channel. You are asked if the created connection is an Inport or an 

Outport. 

 

The resulting Communictation Diagram will look as follows: 



12 
 

 

3. Intuitive P&I network 
The network designed as we did it reflects mainly its function and not its topology as the P&I 

network does. It is described in a graphical way by many diagrams, as the PulseCast Diagram, the 

Communication Diagram and the State Diagram. 

Model the interaction between the elements 

If either Boiler or Room temperature is too low, heating is requested. This requires the water valve 

being open in the desired direction, the pump running and the burner heating. 

The heating strength has to be communicated from to the burner, so he can decrease burner heat if 

target temperature is in reach. 

The communication inside the cluster 

If you create a new PulseCast Diagram for the Cluster CentralHeating, all the we have created 

before initially appear in the diagram. 



13 
 

 

Order them using the select tool and, using the Relation tool, create the connections we need to 

get our Central Heating System working. 

   

The connections are called Pulse Translations: A Pulse Translation connects an Outpulse of a 

Process to an Inpulse of another Process. You can open an Editor with a double-click on the bullet 

of a pulse cast. 



14 
 

 

Add the necessary Inpulses and Outpulses. 

Define the Pulse Translation by assigning the Inpulse of the Receiver process to the respective 

Outpulse of the Sender process. 

 

 



15 
 

Custom display 

For the actual physical implementation of the system with the described behavior, it would be 

possible to decorate the functional model by DSL elements for piping and instrumentation and even 

display them in the Domain Diagram editor with different shapes. 

But, in contrary, it is not possible to create a P&I network and then infer a functional system out of 

the topology of the elements. 

4. The control behavior 
The system, in general, consists of two clients (Boiler and Radiator) and one server (Burner). The 

clients place their heat requests independently, and the burner heats up the medium (water), 

which then is transported to the clients. Either of the transport pipes can be interrupted by the 

valve. 

The Burner process 

Let’s start with the state diagram of the Burner: The main states are off and heating. There are 

states on the way from off to on: start (having the pump running) and ignition and on the way back 

the stop state to swich the pump off at the end. 

In each transition, at most one pulse can be sent. But it is possible to define chains of transitions 

sending a pulse in every transition. 

For the normal case, the state machine of the Burner looks as shown below: 

 



16 
 

The Gas Valve process 

The gas valve is an analog control valve. It has only a single state and a variable Flow denoting the 

current flow. 

The Water Valve process 

The water valve has three states:  Flow to Boiler, Flow to Radiator and Flow to both. 

 

The Pump process 

The pump has the states on and off. 

The Radiator process 

The radiator has the states on and off. 

We could add a config mode to set the variables. 

The Boiler process 

The boiler has the states on and off. 

We could add a config mode to set the variables. 

5. Constraint definitions 
The CIP methodology does not contain a language to define constraints. However, there are several 

methods and mechanisms to implement additional checks for the system: 

- So-called Modes can be defined as combination of process states of other processes in the 

same cluster. This enables switching the mode for initialization, emergencies and recovery. 

- ErrorHandlers are executed, whenever a asynchronous event occurs the process cannot 

handle in the current state. 

- There are ways to query the state of another process (besides Mode control): 

o Gates check for a certain set of state combinations in other states of the same 

cluster 

o Inspection allows to read a variable of an other process. 



17 
 

As an example, we will add an overheat mode to the burner, to prevent the water from 

overheating. The gas and ignition are switched off and the pump switched on from every state. 

 

The overheat mode is controlled by the single state overheat in the Controller process. The mode 

changes the behavior of the process. But if there are actions to be done upon a mode switch, they 

must be modeled separately: Pulses sent in a transition, that causes a mode switch in the receiver 

process, is received already in the new mode. 

In our simple example, on the state transition of the Controller process from waiting to overheat, it 

sends a pulse to the Burner process, which then makes sure the gas and ignition is off and the 

pump is on. 



18 
 

 

Requirements 

Heat up the radiators if the actual room temperature is below the requested temperature. 

Solution: The Radiator process compares the temperature from the room temperature sensor with 

the target temperature. If it is below, a heat request pulse is sent to the Controller process. If it 

changes to lie above the target temperature, a pulse is sent to stop heating. 

Keep the hot water to configured set point (e.g. 95°C) 

Solution: Same solution as for the radiator. 

To increase efficiency, when heating up, gradually increase the burner heat to its max over a certain 

time period. 

Solution: After ignition, the requested heating power is stored and the gas is flow is adapted 

periodically. The gas flow increase per period is restricted to a certain amount. 

To increase efficiency, decrease the burner heat when the actual room temperature is in reach of 

the requested temperature. 

The heating power the Boiler and Radiator process request from the Controller is calculated from 

the temperature difference. The gas flow the Burner requests is calculated from the requested 

heating power. So, the gas flow decreases when the requested heat tends to zero. 



19 
 

The pump must run, when the burner is on. 

In the Burner process, in the transition from the off state a pulse is sent to the Pump process to 

switch on (whereas in the transitions to the off state the Pump is switched off). 

The pump can be set to on (max speed) or off (no speed). 

So the Pump process is modeled with only 2 states: on and off. 

The mid-position valve can in three positions: all flow to boiler, all flow to radiators, or flow going to 

both boiler and radiators. 

So the WaterValve process is modeled with 3 states, one for each position. 

Be able to connect to a ‘Smart Energy Management System’ for: 

- Accepting set points of maximum temperature of water, burner, etc. 

- Accepting specific user settings (user profile), like rate of heating up, holiday/non-holiday 

setting, etc. 

- Visualization of the actual status of the central heating system (status of actuators, values of 

sensors) 

We did not implement a smart energy management system. It could be implemented as additional 

cluster containing a process that sends the target temperature settings to the processes in the 

CentralHeating cluster. The user profile database and holiday settings would also be modeled as 

processes in this cluster. 

6. Stubs 
The stub code is generated automatically. 

7. Generate control code 
The control code is generated by the tool. What is left to do is to connect the machine with the 

environment: 

The singleton struct tIN_ImplementationUnit is used as interface to call when an external event like 

a temperature measurement is communicated. 

struct tIN_ImplementationUnit 

{ 

 void (*BoilerTemperatureSensor) (enum eMSG_BoilerTemperatureSensor , union 

tDATA_BoilerTemperatureSensor * ); 

 void (*PumpSpeedSensor) (enum eMSG_PumpSpeedSensor , union 

tDATA_PumpSpeedSensor * ); 

 void (*IgnitionTemperatureSensor) (enum eMSG_IgnitionTemperatureSensor , 

union tDATA_IgnitionTemperatureSensor * ); 



20 
 

 void (*WaterTemperatureSensor) (enum eMSG_WaterTemperatureSensor , union 

tDATA_WaterTemperatureSensor * ); 

 void (*RoomTemperature) (enum eMSG_RoomTemperature , union 

tDATA_RoomTemperature * ); 

 void (*EINPUT_) (enum eCHAN_ImplementationUnit, enum eIN_ERR_, int); 

}; 

 

The singleton struct tOUT_ImplementationUnit interface is invoked, when an action must be 

propagated to the extern. 

/* Output Interface Type */ 

 

struct tOUT_ImplementationUnit 

{ 

 void (*IgnitionActor) (enum eMSG_IgnitionActor  );  

 void (*PumpActor) (enum eMSG_PumpActor  );  

 void (*WaterValveActor) (enum eMSG_WaterValveActor , union 

tDATA_WaterValveActor * );  

 void (*GasValveActor) (enum eMSG_GasValveActor , union tDATA_GasValveActor 

* );  

}; 

 

The unit initialization function int fINIT_ImplementationUnit(void) must set the function 
pointers and implement functions initiating the proper actions. 
 

Summary 
The Actifsource tool in its CIP Edition let us design Embedded Systems graphically in straight-

forward manner using the CIP methodology, and it produces runnable C/C++ code. The CIP meta-

model is accessible to the user, so it can add custom templates that generate arbitrary code based 

on the same model. 


