
© 2010 actifsource GmbH, Switzerland - all rights reserved.

Tutorial

State Machine

© 2010 actifsource GmbH, Switzerland - all rights reserved.

Tutorial Actifsource Tutorial – State Machine
Required Time  40 Minutes

Prerequisites  Actifsource Tutorial – Installing Actifsource

 Actifsource Tutorial – Simple Service

 Actifsource Tutorial – Complex Service

Goal  Developing an easy to use state machine model

 Show possible events in every transition

 Restrict transition target to state instances of the own state machine

Topics covered  Decorating Relation Aspect

 Range Restriction Aspect

 Selector (forward and reverse selection)

Notation  To do
 Information

 Bold: Terms from actifsource or other technologies and tools

 Bold underlined: actifsource Resources

 Underlined: User Resources

 UnderlinedItalics: Resource Functions

 Monospaced: User input

 Italics: Important terms in current situation

Disclaimer The authors do not accept any liability arising out of the application or use of any
information or equipment described herein. The information contained within this
document is by its very nature incomplete. Therefore the authors accept no
responsibility for the precise accuracy of the documentation contained herein. It
should be used rather as a guide and starting point.

Contact actifsource GmbH
Täfernstrasse 37
5405 Baden-Dättwil
Switzerland
www.actifsource.com

Trademark actifsource is a registered trademark of actifsource GmbH in Switzerland, the EU,
USA, and China. Other names appearing on the site may be trademarks of their
respective owners.

Compatibility Created with actifsource Version 5.8.5

http://www.actifsource.com/

© 2010 actifsource GmbH, Switzerland - all rights reserved.

Overview 3

 Create a simple state machine

 Show possible events in every transition

© 2010 actifsource GmbH, Switzerland - all rights reserved.

Overview 4

 Restrict transition target to state instances of the own state machine



© 2010 actifsource GmbH, Switzerland - all rights reserved.

Overview 5

 Write a code template to generate code for a statemachine

© 2010 actifsource GmbH, Switzerland - all rights reserved.

Part I: 6

Preparation

 Prepare a new actifsource Project named com.actifsource.statemachine as seen in the Actifsource Tutorial –

Simple Service

 Use the following package structure

© 2010 actifsource GmbH, Switzerland - all rights reserved.

Part II: 7

Create a State Machine

 Create a simple state machine

 Instantiate the state machine and see its deficits

© 2010 actifsource GmbH, Switzerland - all rights reserved.

Create a Generic State Machine Model 8

 Create a Generic Domain Model named Design in the Package generic using the DiagramEditor

 The Design shall contain the following Domain Classes

o Statemachine, Event, State, Transition

© 2010 actifsource GmbH, Switzerland - all rights reserved.

Create a Generic State Machine Model 9

 Insert a OwnRelation between

o Statemachine and Event

o Statemachine and State

 Insert a DecoratingRelation between

o State and Transition

 Insert a UseRelation between

o Transition and State

 Adjust the Cardinalities as shown above

 Warning: The layout for the relations transition and targetState might differ in your editor

© 2010 actifsource GmbH, Switzerland - all rights reserved.

Create a Specific State Machine 10

 Create a Statemachine named Statemachine1 in the Package specific

© 2010 actifsource GmbH, Switzerland - all rights reserved.

Create a Specific State Machine 11

 Add the Events start and stop

 Add the States Initialized, Started and Stopped as shown above

© 2010 actifsource GmbH, Switzerland - all rights reserved.

Part III: 12

Decorating Relation Aspect

 Learn how to decorate a relation with a list of resources in order to prevent the mixing of instances from

different Statemachines

© 2010 actifsource GmbH, Switzerland - all rights reserved.

Add a Decorating Relation Aspect 13

 In State open the DecoratingRelation transition

 Press Enter on aspect[DecoratingRelationAspect]

© 2010 actifsource GmbH, Switzerland - all rights reserved.

Add a Decorating Relation Aspect 14

 Note that you can choose between a JavaAspectImplementation and a SelectorAspectImplementation

o Selecting the JavaAspectImplementation allows you to write Java Code for complex operations

o Selecting the ResourceSelectorAspectImplementation allows you to use the easy Selector syntax

 Select ResourceSelectorAspectImplementation

 Click OK

© 2010 actifsource GmbH, Switzerland - all rights reserved.

Add a Decorating Relation Aspect 15

 Let's look at a possible Transition for every Event

 The DecoratingRelation transition is found in State

 We have to navigate from State to Event

o Navigate backwards from State via state to Statemachine

o Navigate forward from Statemachine via event to Event

© 2010 actifsource GmbH, Switzerland - all rights reserved.

Add a Decorating Relation Aspect 16

 Enter the Selector State.-state.event using Content Assist (Ctrl+Space)

 Note that State.–state navigates backwards from State to Statemachine

© 2010 actifsource GmbH, Switzerland - all rights reserved.

Add a Decorating Relation Aspect 17

 Implementing a DecoratingRelationAspect asks for a subclass of Decorator

 Decorator has a useRelation target which is used to store the specific decorating Resource

o Shown as: decoratingRelation[target]

 Open Quick Assist by clicking the light bulb or press Ctrl+1

© 2010 actifsource GmbH, Switzerland - all rights reserved.

Add a Decorating Relation Aspect 18

 Use Quick Assist to let Transition extend Decorator

© 2010 actifsource GmbH, Switzerland - all rights reserved.

Add a Decorating Relation Aspect 19

 Open Transition

 By default a Class extends NamedResource

 The Quick Assist Action changed the extends statement from NamedResource to Decorator

© 2010 actifsource GmbH, Switzerland - all rights reserved.

Add a Decorating Relation Aspect 20

 Quick Assist has done the following

o Added extend Decorator

o Added SubRelation event

© 2010 actifsource GmbH, Switzerland - all rights reserved.

Add a Decorating Relation Aspect 21

 The range of Decorator.target is Resource and therefore untyped in the context of your domain

 The new SubRelation target extends Decorator.target but with Event as its range

 When writing template code, you are able to access Transition.event typed as Event

© 2010 actifsource GmbH, Switzerland - all rights reserved.

Add a Decorating Relation Aspect 22

 Note that the SubRelation target has been added in the Design Diagram automatically



© 2010 actifsource GmbH, Switzerland - all rights reserved.

Use the Decorating Relation Aspect 23

 Open the specific Statemachine Statemachine1

 Note there is a decoratingRelation transition for every Event

 Add new Events and observe the decoratingRelation transition

© 2010 actifsource GmbH, Switzerland - all rights reserved.

Use the Decorating Relation Aspect 24

 In the State Initialized create a new Transition for transition[start]

 Select Started as targetState

 Note that the relation target has been completed automatically with the specific decorating Event start

© 2010 actifsource GmbH, Switzerland - all rights reserved.

Use the Decorating Relation Aspect 25

 Configure the State instances Started and Stopped as shown above

© 2010 actifsource GmbH, Switzerland - all rights reserved.

Part IV: 26

Range Restriction Aspect

 Content Assist (Ctrl+Sapce) in actifsource shows all instances of a desired type; It is often useful to restrict this

selection

 Learn how to apply range restrictions to filter instances for a given type

© 2010 actifsource GmbH, Switzerland - all rights reserved.

Without Range Restriction 27

 Let's discover the needs for a range restriction aspect

 Create a Statemachine named Statemachine2 in the Package specific

 Add the Event instances open and close

 Add the States instances Initialize, Opened and Closed

© 2010 actifsource GmbH, Switzerland - all rights reserved.

Without Range Restriction 28

 Create any new Transition

 Use Content Assist (Ctrl+Space) to add a targetState of type State

 Note that all instances of State are listened instead of just the ones from Statemachine2

© 2010 actifsource GmbH, Switzerland - all rights reserved.

Add a Range Restriction Aspect 29

 In Transition open the useRelation targetState

 Press Enter on aspect[RangeRestrictionAspect]

© 2010 actifsource GmbH, Switzerland - all rights reserved.

Add a Range Restriction Aspect 30

 Note that you can choose between a JavaAspectImplementation and a SelectorAspectImplementation

o Selecting the JavaAspectImplementation allows you to write Java Code for complex operations

o Selecting the ResourceSelectorAspectImplementation allows you to use the easy Selector syntax

 Select ResourceSelectorAspectImplementation

 Click OK

© 2010 actifsource GmbH, Switzerland - all rights reserved.

Add a Range Restriction Aspect 31

 Let's restrict the range of targetState to instances of States owned by the own Statemachine

 The useRelation targetState is found in Transition

 We have to navigate from Transition to all States of the Statemachine

o Navigate backwards from Transition via transition to State

o Navigate backwards from State via state to Statemachine

o Navigate forward from Statemachine via state to State

© 2010 actifsource GmbH, Switzerland - all rights reserved.

Add a Range Restriction Aspect 32

 Enter the Selector Transition.-transition.-state.state using Content Assist (Ctrl+Space)

© 2010 actifsource GmbH, Switzerland - all rights reserved.

Use the Range Restriction Aspect 33

 Use Content Assist (Ctrl+Space) again to add the targetState Opened of type State

 Note that only instances of State from Statemachine2 are listed

© 2010 actifsource GmbH, Switzerland - all rights reserved.

Use the Range Restriction Aspect 34

 Get familiar with Decorating Relations and Range Restrictions

 Write an actifsource Code Template to generate a state machine

© 2010 actifsource GmbH, Switzerland - all rights reserved.

Part V: 35

Code Template for Statemachines

 Write a code template for instances of Statemachine

© 2010 actifsource GmbH, Switzerland - all rights reserved.

Write a code template for Statemachines 36

 Create a package com.actifsource.statemachine.template

 Select the new package and choose New->Template from the context menu.

© 2010 actifsource GmbH, Switzerland - all rights reserved.

Write a code template for Statemachines 37

 Insert StatemachineImpl as Template Name

 Choose the Base Type com.actifsource.statemachine.generic.Statemachine

 Click Finish

© 2010 actifsource GmbH, Switzerland - all rights reserved.

Write a code template for Statemachines 38

 Insert Statemachine.nameImpl.hpp on the Filename Line and make sure that the language (C++) is automatically

detected.

 Write the skeleton for a class Statemachine.nameImpl

© 2010 actifsource GmbH, Switzerland - all rights reserved.

Write a code template for Statemachines 39

Next, we define an enumeration variable with the all the States of a Statemachine as enumerators. This variable stores

the current state of a Statemachine:

 Write the declaration of enumeration variable m_aState

 Insert a LineContext in the enumeration list and choose the Selector Statemachine.state with the support of the

Content Assist

 Insert State.name in the newly created LineContext. Append a ','. Then mark the ',' and select NotLast to

make sure that there is no comma after the last entry in the enumeration list.

© 2010 actifsource GmbH, Switzerland - all rights reserved.

Write a code template for Statemachines 40

We define a member function for each event of our Statemachine, which will later handle all the possible transitions

triggered by the event:

 Create a new LineContext and choose Statemachine.event as the selector of the line context

 Write the skeleton of a function returning void named Event.name

© 2010 actifsource GmbH, Switzerland - all rights reserved.

Write a code template for Statemachines 41

We write a switch-statement with the current state m_aState as control variable and define a LineContext that

iterates over all Transitions referring to an Event through the relation Transition.event:

 Create a switch-statement with the m_aState as control variable

 Create a LineContext inside the switch-statement

 Choose Event.-event as the Selector of the new LineContext

© 2010 actifsource GmbH, Switzerland - all rights reserved.

Write a code template for Statemachines 42

We create a LineContext that iterates over all States that refer to a Transition through the relation State.transition:

 Create a LineContext on the same line as LineContext that we have crated before

 Choose Transition.-transition as the Selector of the new LineContext

© 2010 actifsource GmbH, Switzerland - all rights reserved.

Write a code template for Statemachines 43

We write a case-statement for each State that is (indirectly) referring to an Event through State.transition.event:

 Insert a case State.name and add a break at the end of the case-statement

© 2010 actifsource GmbH, Switzerland - all rights reserved.

Write a code template for Statemachines 444

We update the current state as follows: We first select for an Event the Transitions that refer to the Event trough

Transition.event. For each Transition, we select the States that are connected to Transition by State.transition. For each

State, it holds that if the current state m_aState is equal to State, then the new State of the Statemachine is

Transition.targetState:

 Write code to assign Transition.targetState.name to the variable m_aState

© 2010 actifsource GmbH, Switzerland - all rights reserved.

Write a code template for Statemachines 45

In order to generate code from the template we have implemented before, we setup the project properties for

Actifsource:

 Select the project com.actifsource.statemachine and choose Project->Properties from the main menu

© 2010 actifsource GmbH, Switzerland - all rights reserved.

Write a code template for Statemachines 46

 In the Properties dialog choose actifsource and select the tab Target Folders

© 2010 actifsource GmbH, Switzerland - all rights reserved.

Write a code template for Statemachines 47

 In the dialog Select Target Folder, click on the button Create folder

© 2010 actifsource GmbH, Switzerland - all rights reserved.

Write a code template for Statemachines 48

 Enter src as Folder Name in the New Folder dialog

 Click on OK in the New Folder dialog and then in the Select Target Folder dialog

© 2010 actifsource GmbH, Switzerland - all rights reserved.

Write a code template for Statemachines 49

 Check the settings on the Target Folders tab and close the dialog by clicking on OK

© 2010 actifsource GmbH, Switzerland - all rights reserved.

Write a code template for Statemachines 50

The code generator now applies the template StatemachineImpl to the two Statemachine instances and stores the

resulting files to the src folder:

 Open the src folder and check that the two files Statemachine1Impl.hpp and

Statemachine2Impl.hpp have been generated

 If the files have not been generated, make sure that Generate Automatically is active under Project in the main

menu

© 2010 actifsource GmbH, Switzerland - all rights reserved.

Write a code template for Statemachines 51

 Open the newly generated files and inspect and compare the code for the two Statemachines

 Learn how to extend the Statemachine by conditional transitions and actions executed together with a

transition by working through the Actifsource Tutorial – Code Snippets

 Complete the generated classes by adding a member function initialize()

© 2010 actifsource GmbH, Switzerland - all rights reserved.

