
© 2010 actifsource GmbH, Switzerland - all rights reserved.

Tutorial

Complex Service

© 2010 actifsource GmbH, Switzerland - all rights reserved.

Tutorial Actifsource Tutorial – Complex Service
Required Time  60 Minutes

Prerequisites  Actifsource Tutorial – Installing Actifsource

 Actifsource Tutorial – Simple Service

Goal  Use Java Functions to reuse text fragments in your templates and capture
complex expressions to keep your templates clean and easy to read

 Use Function Spaces to keep Java Functions organized

Topics covered  Extracting Java Functions from template code

 Editing Java Functions

 Advanced Template Editor Context Operations

 Functions Spaces and Template Functions

 Built-in Java Functions

 Place generated code in specific folders

 Copy with Context

Notation  To do
 Information

 Bold: Terms from actifsource or other technologies and tools

 Bold underlined: actifsource Resources

 Underlined: User Resources

 UnderlinedItalics: Resource Functions

 Monospaced: User input

 Italics: Important terms in current situation

Disclaimer The authors do not accept any liability arising out of the application or use of any
information or equipment described herein. The information contained within this
document is by its very nature incomplete. Therefore the authors accept no
responsibility for the precise accuracy of the documentation contained herein. It
should be used rather as a guide and starting point.

Contact actifsource GmbH
Täfernstrasse 37
5405 Baden-Dättwil
Switzerland
www.actifsource.com

Trademark actifsource is a registered trademark of actifsource GmbH in Switzerland, the EU,
USA, and China. Other names appearing on the site may be trademarks of their
respective owners.

Compatibility Created with actifsource Version 5.8.5

http://www.actifsource.com/

© 2010 actifsource GmbH, Switzerland - all rights reserved.

Overview 3

 Prepare a new actifsource Project as seen in the Actifsource Tutorial – Simple Service

 Learn how to extract Java Functions from template code to cope with complex situations

 Edit Java Functions

 Learn about advanced Context Operations in the Template Editor

 Learn about Function Spaces and how to place functions

 Use built-in functions

 Generate code for specific folders

 Copy template code with its Context

© 2010 actifsource GmbH, Switzerland - all rights reserved.

Part I: 4

Preparation

 Prepare a new actifsource Project as seen in the Actifsource Tutorial – Simple Service

o Setup the Target Folder src

o Create a Generic Domain Model

o Create a Specific Domain Model

o Create a Code Template

 Use the following package structure

© 2010 actifsource GmbH, Switzerland - all rights reserved.

Create a Generic Domain Model 5

 Create a Generic Domain Model in the DiagramEditor named ServiceDesign in the Package generic

 The Design shall contain the following Domain Classes

o Service, Call, Parameter, Type

 Insert a OwnRelations between

o Service and Call

o Call and Parameter

 Insert a UseRelations between

o Call and Type

o Parameter and Type

 Adjust the Cardinalities as shown above

© 2010 actifsource GmbH, Switzerland - all rights reserved.

Create a Specific Domain Model 6

 Create a Service named Patient in the Package specific

 Add the Calls Create and Delete

 Add the Parameter LastName, FirstName and Id as shown above

 Add the returnTypes as shown above

© 2010 actifsource GmbH, Switzerland - all rights reserved.

Create a Code Template 7

 Create a Code Template named ServiceImpl in the Package template

 Write code as shown above

 The function shall be placed in the Context Call; Selector is Service.call

 The function parameters shall be placed in the Context Parameter; Selector is Call.parameter

 Save the Code Template

© 2010 actifsource GmbH, Switzerland - all rights reserved.

Generate Code 8

 You’ll find the generated code PatientImpl.java in the Target Folder src

© 2010 actifsource GmbH, Switzerland - all rights reserved.

Part II: 9

Java Functions

 Use Java Functions to

o extract recurring text fragments from your templates

o capture complex expressions to keep your templates clean and easy to read

 Use Java Classes generated from your Generic Domain Model to write and maintain complex Java Functions

© 2010 actifsource GmbH, Switzerland - all rights reserved.

Extract Function 10

 Note that the term Service.nameImpl is used twice

 We should extract identical terms to honor the DRY principle (Don’t Repeat Yourself)

© 2010 actifsource GmbH, Switzerland - all rights reserved.

Extract Function 11

 In your template select the text you want to extract into a function

 The light bulb at the left hand indicates Quick Assist is available

© 2010 actifsource GmbH, Switzerland - all rights reserved.

Extract Function 12

 Activate QuickAssist by clicking the light bulb or by pressing Ctrl+1

 Click Extract JavaFunction

© 2010 actifsource GmbH, Switzerland - all rights reserved.

Extract Function 13

 Name the function className

 Click Finish

© 2010 actifsource GmbH, Switzerland - all rights reserved.

Using Functions 14

 The new function className returns the extracted fragment from your template

 The static function className is added to the static Java class ServiceImpl.ServiceFunctions in class ServiceImpl;

this class is automatically generated by actifsource

 The term Service.nameImpl has been replaced by the function Service.className

 Java Functions are shown in italics in the actifsource Template Editor

© 2010 actifsource GmbH, Switzerland - all rights reserved.

Using Functions 15

 Let’s replace the second occurrence of the term Service.nameImpl

 Use Content Assist (Ctrl+Space) on Service to insert the function className for your class name

© 2010 actifsource GmbH, Switzerland - all rights reserved.

Editing Functions 16

 Open the underlying Function Model (Ctrl+Alt+Left-Click)

 Alternatively, you can use the Tool Open Link in JavaEditor from the actifsource Template Editor toolbar

© 2010 actifsource GmbH, Switzerland - all rights reserved.

Editing Functions 17

 Change function declaration here if needed

 Please notice that the Function declaration was placed in the template

© 2010 actifsource GmbH, Switzerland - all rights reserved.

Editing Functions 18

 Open the underlying Java Function (Ctrl+Left-Click)

 Alternatively, you can use the Tool Open Link in JavaEditor from the actifsource Template Editor toolbar

© 2010 actifsource GmbH, Switzerland - all rights reserved.

Editing Functions 19

 The class ServiceImpl is opened in the Java Editor showing your function className

© 2010 actifsource GmbH, Switzerland - all rights reserved.

Editing Functions 20

 Note that actifsource generates a select method for each property of the corresponding class in the Generic

Domain Model. You may use these methods to traverse your Generic Domain Model using the respective

selectPROPERTY() methods in your Java Functions

© 2010 actifsource GmbH, Switzerland - all rights reserved.

Editing Functions 21

 Make sure to place additional imports within the corresponding Protected Regions

 Please note that all code outside Protected Regions will be overwritten if the respective source file is re-

generated.

© 2010 actifsource GmbH, Switzerland - all rights reserved.

Part III: 22

Function Spaces

 Function Declarations are managed as actifsource Resources

 All Function Declarations are placed in Functions Spaces

 Templates are Functions Spaces by default

 Functions Spaces can exist without Templates

 Function Spaces are Resources and can therefore be placed in Packages

© 2010 actifsource GmbH, Switzerland - all rights reserved.

Advanced Context Operations 23

 Let’s add a new line after the Call Context in the Service Context

 Place cursor on the last position of the Call Context

 Note that the corresponding Context Bar is highlighted

© 2010 actifsource GmbH, Switzerland - all rights reserved.

Advanced Context Operations 24

 Press Cursor-Right

 While the cursor stays at its position, the Service Context is now highlighted

 Alternatively, you can use the context navigation from the actifsource Template Editor toolbar

© 2010 actifsource GmbH, Switzerland - all rights reserved.

Advanced Context Operations 25

 Press Enter

 A new line has been added in the Parent Context

© 2010 actifsource GmbH, Switzerland - all rights reserved.

Add Context via Quick Assist 26

 Let’s look at a quick and easy way to insert a new Context

 Insert the Variable Service.call using Content Assist (Ctrl+Space)

© 2010 actifsource GmbH, Switzerland - all rights reserved.

Add Context via Quick Assist 27

 The light bulb at the left hand indicates Quick Assist is available

 Activate QuickAssist by clicking the light bulb or pressing Ctrl+1

© 2010 actifsource GmbH, Switzerland - all rights reserved.

Add Context via Quick Assist 28

 Click on Create Line Context

© 2010 actifsource GmbH, Switzerland - all rights reserved.

Add Context via Quick Assist 29

 Note that a new Call Context (Selector: Service.call) has been added

 The Variable Service.call has been replaced by Call

© 2010 actifsource GmbH, Switzerland - all rights reserved.

Built-In Functions 30

 Let’s use Built-In Functions on Attributes

 Press '.' (dot) and Content Assist (Ctrl+Space) after name to see all available Built-In Functions

© 2010 actifsource GmbH, Switzerland - all rights reserved.

Built-In Functions 31

 Complete the member variable declaration as shown above

© 2010 actifsource GmbH, Switzerland - all rights reserved.

Extract Function in Function Space 32

 Call.nameImpl shall be the name of a new Template

 Select the term Call.nameImpl

 Activate QuickAssist by clicking on the light bulb or pressing Ctrl+1

 Click Extract TemplateFunction

 Template Functions behave like templates and are easier to handle than Java functions

© 2010 actifsource GmbH, Switzerland - all rights reserved.

Extract Function in Function Space 33

 Name the function className

 Note that the default Function Space for this new function is the Template ServiceImpl

 Click New Template to create a new template which acts as Function Space for the new function className

© 2010 actifsource GmbH, Switzerland - all rights reserved.

Extract Function in Function Space 34

 Check the Package

 Name the Template CallImpl

 Press Finish

© 2010 actifsource GmbH, Switzerland - all rights reserved.

Extract Function in Function Space 35

 Note that the Function Space has been changed from ServiceImpl to CallImpl

 Press Finish

© 2010 actifsource GmbH, Switzerland - all rights reserved.

Extract Function in Function Space 36

 The Term Call.nameImpl has been replaced by Call.className@CallImpl

 className@CallImpl indicates that the Function className belongs to the Function Space CallImpl

© 2010 actifsource GmbH, Switzerland - all rights reserved.

Extract Function in Function Space 37

 A new Template named CallImpl has been created in the Package template

 Use the Function className in the file line of your template

 Note that className is the Function which we extracted in the template ServiceImpl before

© 2010 actifsource GmbH, Switzerland - all rights reserved.

Extract Function in Function Space 38

 Write a simple class as shown above

 Write a method execute with returnType and Parameter

 Please notice that you might copy the whole parameter expression from the ServiceImpl Template

 Place a Protected Context in the function body

© 2010 actifsource GmbH, Switzerland - all rights reserved.

Templates and Folders 39

 Open the underlying Template Function for className (Ctrl+Left-Click)

 Alternatively, you can use the Tool Open Link in JavaEditor from the actifsource Template Editor toolbar

© 2010 actifsource GmbH, Switzerland - all rights reserved.

Templates and Folders 40

 The function className is handled as a Template Function (partial template)

 Template Functions are easy to handle

 A TemplateFunction may call itself to follow recursive meta model designs (Composite Pattern)

© 2010 actifsource GmbH, Switzerland - all rights reserved.

Templates and Folders 41

 Generated artifacts are placed in the Target Folder of your project

 You may want to place generated artifacts in specific sub folders

 Add Service.name/ as folder information in the file line of the Template ServiceImpl as shown above

© 2010 actifsource GmbH, Switzerland - all rights reserved.

Templates and Folders 42

 We want all Call implementations to be generated in the same folder as their corresponding Service

 Add Service.name/ as the folder name in the file line of the Template CallImpl as shown above

 Save the Templates CallImpl and ServiceImpl

 Note that files generated from this template are moved to the new location automatically

 Protected Regions of the generated files are preserved

© 2010 actifsource GmbH, Switzerland - all rights reserved.

Copy with Context 43

 Extract a TemplateLineFunction memberName for the member variable name

© 2010 actifsource GmbH, Switzerland - all rights reserved.

Copy with Context 44

 Also use the function memberName in the function body as shown above

© 2010 actifsource GmbH, Switzerland - all rights reserved.

Templates and Folders 45

 Open the underlying TemplateLineFunction for memberName (Ctrl+Left-Click)

 Alternatively, you can use the Tool Open Link in JavaEditor from the actifsource Template Editor toolbar

© 2010 actifsource GmbH, Switzerland - all rights reserved.

Templates and Folders 46

 The function className is handled as a TemplateLineFunction

 Template Line Functions are the easiest way to reuse information

 Template Line Functions do not allow context

© 2010 actifsource GmbH, Switzerland - all rights reserved.

Copy with Context 47

 We want to copy Parameter.name including the Parameter Context and the separating comma from the

functions parameter list

 Select the Term "Parameter.name, "

 From the Context Menu, select Copy with Context

 From the Subcontext Menu, select Parameter

 Note also the shortcuts Alt+PageUp to select the parent context, and ; Ctrl+C to copy a context

© 2010 actifsource GmbH, Switzerland - all rights reserved.

Copy with Context 48

 Place your cursor between the brackets

 Select Paste from the Context Menu (Ctrl+V)

© 2010 actifsource GmbH, Switzerland - all rights reserved.

Copy with Context 49

 The text and its corresponding context are inserted

© 2010 actifsource GmbH, Switzerland - all rights reserved.

