
© 2010 actifsource GmbH, Switzerland - all rights reserved.

Tutorial

Refactoring

© 2010 actifsource GmbH, Switzerland - all rights reserved.

Tutorial Actifsource Tutorial – Refactoring
Required Time  45 Minutes

Prerequisites  Actifsource Tutorial – Installing Actifsource

 Actifsource Tutorial – Simple Service

Goal  Writing an aspect for refactoring instances

 Refactor instances to match the new specification

 Update templates

Topics covered  Create and register a refactoring aspect

 Update the simple service model

 Write a simple refactoring

 Execute a refactoring

 Update the templates

Notation  To do
 Information

 Bold: Terms from actifsource or other technologies and tools

 Bold underlined: actifsource Resources

 Underlined: User Resources

 UnderlinedItalics: Resource Functions

 Monospaced: User input

 Italics: Important terms in current situation

Disclaimer The authors do not accept any liability arising out of the application or use of any
information or equipment described herein. The information contained within this
document is by its very nature incomplete. Therefore the authors accept no
responsibility for the precise accuracy of the documentation contained herein. It
should be used rather as a guide and starting point.

Contact actifsource GmbH
Täfernstrasse 37
5405 Baden-Dättwil
Switzerland
www.actifsource.com

Trademark actifsource is a registered trademark of actifsource GmbH in Switzerland, the EU,
USA, and China. Other names appearing on the site may be trademarks of their
respective owners.

http://www.actifsource.com/

© 2010 actifsource GmbH, Switzerland - all rights reserved.

Overview 3

 Create and register a refactoring aspect

 Update the simple service model

 Write a simple refactoring

© 2010 actifsource GmbH, Switzerland - all rights reserved.

Overview 4

 Execute the refactoring

 Update the templates

© 2010 actifsource GmbH, Switzerland - all rights reserved.

Part I: 5

Create and register a refactoring aspect
 Open the project created during the Actifsource Tutorial – Simple Service

 Create a Refactoring instance

© 2010 actifsource GmbH, Switzerland - all rights reserved.

Create and register a refactoring aspect 6

 Open the MANIFEST.MF

© 2010 actifsource GmbH, Switzerland - all rights reserved.

Create and register a refactoring aspect 7

 Add a dependency to the ch.actifsource.ui.refactoring-Plugin

© 2010 actifsource GmbH, Switzerland - all rights reserved.

Create and register a refactoring aspect 8

 Create a new java source folder for the aspect implementation

© 2010 actifsource GmbH, Switzerland - all rights reserved.

Create and register a refactoring aspect 9

 Create a new java class extending the AbstractRefactorerAspect class

© 2010 actifsource GmbH, Switzerland - all rights reserved.

Create and register a refactoring aspect 10

 Add a default constructor calling the base constructor

 The first parameter defines a version string for the aspect

The following three parameters are used to specify the date when the refactoring was written.

The last parameter is the name.

The arguments are shown in the dialog and used to sort the refactoring aspects.

© 2010 actifsource GmbH, Switzerland - all rights reserved.

Create and register a refactoring aspect 11

 Register the java class in the Refactoring instance

© 2010 actifsource GmbH, Switzerland - all rights reserved.

Part II: 12

Update the simple service model
 Open the Service class

 Select the call relation and cut the resource by using the clipboard (Ctrl+X)

© 2010 actifsource GmbH, Switzerland - all rights reserved.

Update the simple service model 13

 Create a new Relation named “group” with a new Class named “CallGroup” used as the range

© 2010 actifsource GmbH, Switzerland - all rights reserved.

Update the simple service model 14

 Paste the call relation from the clipboard into the new Callgroup

© 2010 actifsource GmbH, Switzerland - all rights reserved.

Update the simple service model 15

 Add an additional Attribute named “async”

 We only use an attribute to keep the tutorial simple. An alternative would be to create a subclass of CallGroup

instead.

© 2010 actifsource GmbH, Switzerland - all rights reserved.

Part III: 16

Write a simple refactoring
 First we want to have more convenient access to the resource guids.

 Add a the ExportWithoutStatements buildconfig to the src-gen target folder for exporting java classes for the

SimpleService packages

 This will generate a class for each package containing a constant for each resource.

© 2010 actifsource GmbH, Switzerland - all rights reserved.

Write a simple refactoring 17

 Implement the refactor method

 The refactor method has only two parameters an IModifiable and a list of packages. The modifiable provides

the context to access the actifsource resources. The package list contains the actifsource packages selected by

the user when starting the refactoring. How the packages selection is interpreted is up to the implementer.

 In general you need to use the two classes Select and Update. These are facades providing a convenient way to

select and update resource information in a context. To get information about the available methods, open the

class and a have a look at the javadoc comments on how to use them.

© 2010 actifsource GmbH, Switzerland - all rights reserved.

Write a simple refactoring 18

 The actifsource API works with statements and resources. A Statement is a triple connecting two resources

(subject, object) through a property (predicate). The subject is the resource whose type (class) defines the

predicate (property). The object is an instance of properties range. This is almost the same you see in the

resource editor. In our example Patient is an instance of Service. Person refers the Calls throw the call-Relation

defined in the Service class. For example you will get a statement Person (subject), call (predicate), Create

(object) because Person refers to Create through the call relation. This is different from the diagram editor

where subject and object are represented by their type.

 The old model looked like this

and the new model looks like this now

The only thing the refactoring has to do is adding a CallGroup into each Service and move the Calls into the

group.

© 2010 actifsource GmbH, Switzerland - all rights reserved.

Write a simple refactoring 19

 Select all Service instances in packages posted to the refactorer

 The instanceWithPackage method takes an ISelectable and the GUID of a class. The result is an Iterable

providing all instances reachable through the selectable. Since each IModifiable is also an ISelectable, you can

use the IModifiable passed to the refactorer.

© 2010 actifsource GmbH, Switzerland - all rights reserved.

Write a simple refactoring 20

 Create a new CallGroup using the Update-Facade and add it to the Service-Instance

 The Update-Facade always requires an IModifiable to work with. Using the createResourceWithDefaults method

you can create a new instance of a type in the specific package. If you have a named resource, it is

recommended to use the overload taking a name. The last parameter defines the default values for the

attributes and relations when creating the resource and can be left out. For each property not found in the

defaultValue map the default defined in the model will be used.

 The createStatement method creates a statement. In this case the newly created group is assigned to the

service using the group relation.

© 2010 actifsource GmbH, Switzerland - all rights reserved.

Write a simple refactoring 21

 Move the Calls to the group

 This time the method is located on the RefactorUtil. The reason for this is that the Update-Facade only provides

simple modification methods and no selects. The moveStatements method uses methods from both the Select

and Update method and is more complex. The moveStatements method take the IModifiable, a Property, the

source and the target. It is simply often used when moving a Property from one class to another.

 By using the cut and paste in ResourceEditor, actifsource automatically detected that you have moved the

Property call.

© 2010 actifsource GmbH, Switzerland - all rights reserved.

Part IV: 22

Execute a refactoring
 Open the Patient-Service to see that it is actually invalid.

 As you can see the group relation that is already there and it would be possible to do change the model by

hand.

© 2010 actifsource GmbH, Switzerland - all rights reserved.

Execute a refactoring 23

 Open the context menu on the project or the package containing the Patient service

© 2010 actifsource GmbH, Switzerland - all rights reserved.

Execute a refactoring 24

 Select the CallGroupRefactoringAspect.

 Press Finish.

 As you can see, the values passed to the constructor are shown in the refactoring dialog. In actifsource we use

the aspects to provide refactorings whenever we change the metamodel.

© 2010 actifsource GmbH, Switzerland - all rights reserved.

Execute a refactoring 25

 The Patient service is now refactored

© 2010 actifsource GmbH, Switzerland - all rights reserved.

Part IV: 26

Update the templates
 The refactoring you have written only updates the instances. This is common practice, writing a refactoring for

the service model and the templates makes no sense, since updating the classes is different for each step. The

same applies for the templates.

 Open the ServiceImpl template

 Go to the Service.call selector by clicking on the first errormarker

 Change it to Service.group.call

© 2010 actifsource GmbH, Switzerland - all rights reserved.

Update the templates 27

 Add a new line using the async attribute

© 2010 actifsource GmbH, Switzerland - all rights reserved.

Update the templates 28

 Open the generate PatientImpl.java and update the protected regions.

 You may play around a little bit with the model by adding an additional CallGroup to the Patient-service with the

async attribute set to true.

© 2010 actifsource GmbH, Switzerland - all rights reserved.

