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Overview 3 

 Create a meta-model for Statemachine, instantiate Statemachine and write a code template to generate a 

simple implementation of your Statemachines in C++ as seen in the Actifsource Tutorial – Statemachine 

 
 Add a Code Snippets with conditional expressions to Transition  

 Create a Domain Diagram for an instance of Statemachine and show the conditions for Transitions in the 

diagram 

 Generate code for Statemachines that checks the associated condition before executing a transition 

 Add a Code Snippet with an action to Transition and generate code that executes the action together with the 

state transition 
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Part I:  4 

Preparation  

 

Setup a project com.actifsource.statemachine with a meta-model for Statemachine, create two instances of 

Statemachine and implement a code template for Statemachine as seen in the Actifsource Tutorial – Statemachine:  

 Prepare a new Actifsource Project com.actifsource.statemachine  

 Create a meta-model for Statemachine 

 Create two instances of type Statemachine, namely Statemachine1 and Statemachine2 

 Write a code template StatemachineImpl for the type Statemachine 

 Use the package structure shown above 
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Part II:  5 

Implement conditional transitions 

 

First, we import all the resources needed to enable the support of Code Snippets in our project: 

 Select the project com.actifsource.statemachine and choose Project->Properties from the main menu 

 In the properties dialog choose actifsource and go the Built-in Dependencies tab 

 Click on Add Builtin  

 In the dialog Select a built-in dependency choose CODESNIPPET and click on OK 
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Implement conditional transitions 6 

 

 Close the Properties dialog by clicking on OK 
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Implement conditional transitions 7 

 

We add a Code Snippet relation to class Transition: 

 Open the class Transition in the Resource Editor 

 Add a (third) property to the class 

 Choose StructuredCodeSnippetRelation in the dialog Type Selection 
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Implement conditional transitions 8 

 

 Insert condition as name of the relation 

 Create a new CodeSnippetRelationAspect as shown above 

 Choose Cardinality0_1 as  subjectCardinality and as objectCardinality  

 Create a new language statement by calling the Content Assist and choosing CMinusCondition 
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Implement conditional transitions 9 

 

 

We add a new OwnRelation called variable to the class Statemachine: 

 Open Transition in the ResourceEditor 

 Add a new property and choose OwnRelation in the Type Selection dialog 

 Insert variable as the name of the relation  

 Choose new ch.actifsource.core.Class as the range with the support of the Content Assist 
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Implement conditional transitions 10 

 

 Insert Variable as name of the newly created class, which is opened automatically in the Resource Editor 
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Implement conditional transitions 11 

 

A conditional expression for a Transition should be able to use all Variables that are owned by the Statemachine of the 

Transition as variables: 

 Insert a RelationTokenProvider 

 Define the Selector Transition.-transition.-state.counter which selects all Variables that are owned by the 

Statemachine of the Transition 

 Choose ch.actifsource.codesnippet.metamodel.TokenType.Variable as tokenType 
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Implement conditional transitions 12 

 

 

We add a condition to the state transition triggered by the event start that restricts the number of times the 

Statemachine can switch to the State Started: 

 Open the instance Statemachine1 in the ResourceEditor 

 Add two statements for variable to Statemachine1 

 Choose startCounter as the name of the first and startLimit as the name of the second Variable 
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Implement conditional transitions 13 

 

 

We add a conditional expression to the state transition triggered by the Event start in the State Initialized: 

 Open the state Initialized in the Resource Editor and then open its Transition start 

 Open the Code Snippet Editor by selecting the relation condition and pressing Enter 

 Call the Content Assist in the Code Snippet Editor and choose startCounter  

 Enter ' < ' in the Code Snippet Editor and call the Content Assist again 

 Choose startLimit in the Content Assist 
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Implement conditional transitions 14 

 

We enforce that the Statemachine can only switch a maximum of startLimit times to the State Started by adding the 

same conditional expression also to the Transition triggered by the Event start in the State Stopped: 

 Enter the conditional expression in the same way as on the previous page 

 

 

  



© 2010 actifsource GmbH, Switzerland - all rights reserved. 

Part II:  15 

Create a Domain Diagram 

 

We create a new Diagram Type called Statemachine in order to define properties of Domain Diagrams of Statemachines: 

 Select the package com.actifsource.statemachine.generic and choose New -> Diagram Type 
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Create a Domain Diagram 16 

 

 Enter Statemachine as name for the newly created DiagramType in the New DiagramType Wizard 

 Choose com.actifsource.statemachine.generic.Statemachine  as RootClass 
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Create a Domain Diagram 17 

 

 Define allowedClass as com.actifsource.statemachine.generic.State 

 Choose ShowPaletteEntry as paletteEntry 

 Insert an allowedRelation of type AllowedIndirectRelation with selector State.transition.targetState 
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Create a Domain Diagram 18 

 

Now we create a new Domain Diagram for Statemachine1 based on the newly created Diagram Type: 

 Select com.actifsource.statemachine.specific and choose New -> Domain Diagram 
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Create a Domain Diagram 19 

 

 Check the chosen settings in the open dialog and click Finish 
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Create a Domain Diagram 20 

 

 Choose Select in the Palette of the Diagram Editor and arrange the States such that all transitions are visible 
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Create a Domain Diagram 21 

 

 

Next, we will see how to display the conditional expressions associated with a Transition in the Domain Diagram. First, 

we create a function that generates the displayed text from the conditional expression: 

 Select the package com.actifsource.statemachine.generic and choose New -> FunctionSpace  
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Create a Domain Diagram 22 

 

 

 Enter NameFunctions as name of the FunctionSpace  
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Create a Domain Diagram 23 

 

 Create a new FunctionContext with typeRef com.actifsource.statemachine.generic.Transition 

 Create a new function in the FunctionContext and choose TemplateFunction in the Type Selection dialog 
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Create a Domain Diagram 24 

 

 Enter displayName as name of the TemplateFunction 

 Open the TemplateFunction in the Template Function Editor by double-clicking on displayName in the Project 

Explorer 
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Create a Domain Diagram 25 

 

The function should display the name of the event triggering the Transition and in brackets the conditional expression if 

there is one: 

 Enter Transition.event.name in the TemplateEditor followed by '[]' 

 Place the cursor inside the brackets and choose Insert ColumnContext from the menu  
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Create a Domain Diagram 26 

 

 Choose Transition.condition  as selector for the column context 

 Enter CodeSnippet.displayCodeSnippetSingleLine@DisplayCodeSnippet in the column context. This function 

outputs a string that represents the expression in the Code Snippet as entered by the user, i.e., without parsing 

or processing it  
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Create a Domain Diagram 27 

 

We will use the newly created function displayName to define a NameAspect for Transitions: 

 Create a NameAspect with the Content Assist and choose TextSelectorAspectImplementation in the Select 

Decoration Type dialog 
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Create a Domain Diagram 28 

 

 Enter Transition.displayName@NameFunction as selector of the NameAspect, i.e., the name of the Transition 

will be the output of the function we have defined before 
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Create a Domain Diagram 29 

 

 Open the Statemachine1 Domain Diagram again and check that the Transitions are now displayed with their 

name including the conditional expressions as specified above 
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Part III:  30 

Generate code for conditional transitions 

 

In this part, we will extend the template StatemachineImpl as implemented in the Actifsource Tutorial – Statemachine 

such that the statemachine executes a state transition only if the associated condition is fulfilled: 

 Open the template StatemachineImpl in the Template Editor 
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Generate code for conditional transitions 31 

 

We write an if-statement with the conditional expression associated with a Transition as condition: 

 Insert a new Line Context and write the selector Transition.condition for the newly created context 

  



© 2010 actifsource GmbH, Switzerland - all rights reserved. 

Generate code for conditional transitions 32 

 

 Write an if-statement in the new line context and insert a call to the function toC@CodeSnippetToCode on the 

CodeSnippet available in the this context as condition of the if-statement 

 Add opening and closing braces around the existing assignment expression 
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Generate code for conditional transitions 33 

 

 

 Open the generated files Statemachine1Impl.hpp (overwritten) and Statemachine2Impl.hpp (unchanged) and 

inspect the changes. 
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Part III:  34 

Customized variable names  

 

 The built-in template functions that we used so far generate the name of variables (and also functions) by 

calling simple name on the corresponding resource 

 In this part we will change the generated variable names by adding a prefix to the variable names according to 

our naming convention 
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Customized variable names 35 

 

 Create a new Java source folder: select the project com.actifsource.statemachine and choose New -> Source 

Folder from the menu 
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Customized variable names 36 

 

 Insert aspects as name of the new folder 

  



© 2010 actifsource GmbH, Switzerland - all rights reserved. 

Customized variable names 37 

 

 

 Create a new package com.actifsource.statemachine.generic in the aspects folder: select the aspects folder and 

choose New -> Package from the menu 
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Customized variable names 38 

 
 Select the package com.actifsource.statemachine.generic in the folder aspects and choose New -> Interface 

from the menu 

 Write IMyNameProvider as name of the new interface 

 Choose ch.actifsource.codesnippet.metamodel.template.INameProvider as Extended interface 
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Customized variable names 39 

 
 Select the package com.actifsource.statemachine.generic in the folder aspects and choose New -> Class from 

the menu 

 Write MyNameProviderLiteralAspect as name of the new class 

 Choose ch.actifsource.core.model.aspects.impl.AbstractStatelessAspectImpl as Superclass 

 Choose ch.actifsource.core.model.aspects.impl.IGenericLiteralAspect<IMyNameProvider> as Interface 

 Click Finish 
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Customized variable names 40 

 
 In the newly created class remove all TODO comments  

 Write the statement return MyNameProvider.class; in the method getValueType()  

 Write the statement return new Literal(arg0.toString());  
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Customized variable names 41 

 
 Create a new Literal type: select the package com.actifsource.statemachine.generic in the folder asrc and 

choose New -> Resource from the menu 

 Choose the type ch.actifsource.core.Literal as Type of the new Resource 

 Write MyNameProviderLiteral as Name of the new Resource 
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Customized variable names 42 

 

 Open the new Literal in the Resource Editor 

 Create a LiteralAspect with type JavaAspectImplementation and choose the class 

com.actifsource.statemachine.generic.MyNameProviderLiteralAspect as className 

 Let the MyNameProviderLiteral extend 

ch.actifsource.codesnippet.metamodel.parsetree.template.NameProvider, which is the default NameProvider 

and generates names by calling simpleName@BuiltIn 
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Customized variable names 43 

 
 Create a new FunctionSpace: Select the package com.actifsource.statemachine.generic in the asrc folder and 

choose New -> FunctionSpace 

 Insert TokenNameFunctions as the name of the FunctionSpace and click Finish 
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Customized variable names 44 

 
 

 Let the new FunctionSpace TokenNameFunctions extend from TokenToName 
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Customized variable names 45 

 

 Open the FunctionSpace TokenNameFunctions in the Resource Editor  

 Create a new FunctionContext with typeRef MyNameProviderLiteral 

 Create a new function and choose TemplateLineFunction from the Type Selection dialog 
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Customized variable names 46 

 

 Insert variableName as the name of the new TemplateLineFunction 

 Create a parameter Param of type ClassType and with classRef ch.actifsource.core.Resource 

 Insert m_Resource.simpleName@BuiltIn as text, i.e., the function appends the prefix "m_" to the output of 

Resource.simpleName@Builtin 

 Warning: Please choose the exact function name for variableName or functionName since these functions 

are overwritten 

mailto:Resource.simpleName@Builtin
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Customized variable names 47 

 

 Create a new FunctionContext with typeRef Statemachine 

 Create a new function and choose JavaFunction from the Type Selection dialog 
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Customized variable names 48 

 

 Insert generateNameProvider as name of the function 

 Create a statement returnType of type LiteralType with literalRef MyNameProviderLiteral  
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Customized variable names 49 

 

 Save the FunctionSpace TokenNameFunctions 

 Open the newly generated file TokenNameFunctions.java in the Java Editor  

 Write the statement return new IMyNameProvider(){}  inside the protected region in the method body 

of the method generateNameProvider 

 Save the file  
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Customized variable names 50 

 

 Open the template StatemachineImpl in the Template Editor  

 Insert a new LineContext on the line after the case expressions 

 Choose Transition.condition as the selector of the new context 
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Customized variable names 51 

 

 Insert a new LineContext on the same line 

 Choose Statemachine.generateNameProvider@TokenNameFunctions:NameProvider as selector of the new 

context 

 Write an if-statement with CodeSnippet.toCwithNameProvider@CodeSnippetToCode 

 Note that there is an error on the edited line because the parameter to the function cannot be resolved 
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Customized variable names 52 

 

 Insert a new line context on the same line and choose CodeSnippet:CodeSnippet (This dummy context allows 

Actifsource to correctly and automatically resolve the parameter to the function from the contexts) 

 Save the template and make sure that the code is generated 
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Customized variable names 53 

 

 

 Open  the file Statemachine1Impl.hpp and check that the variable names have been generated with the defined 

prefix "m_" 
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Part III:  54 

Implement actions for transitions 

 

In this part, we will see how to add an action to a transition. We add the code corresponding to the action as a Code 

Snippet to the model. This code will be executed together with the transition: 

 Open the class Transition in the Resource Editor and add a Code Snippet relation as already seen in Part II 

 Insert action as name of the StructuredCodesnippetRelation, choose subjectCardinality and objectCardinality 

Cardinality0_1 

 Create a RelationTokenProvider with selector Transition.-transition.-state.variable and tokenType Variable 

 Choose the language CMinus 
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Implement actions for transitions 55 

  

We will now increment the startCounter each time that we switch to the State Started: 

 Open Statemachine1 in the Resource Editor 

 Add an action to the State Initialized and insert the code startCounter = startCounter + 1; into 

the Code Snippet Editor 

 Add an action to the State Stopped and insert the code startCounter = startCounter + 1; into the 

Code Snippet Editor 
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Implement actions for transitions 56 

 

 

 Open the template StatemachineImpl in the Template Editor 

 Add a new line context after the assignment statement that updates the state 

 Choose Transition.action as the selector of the state (to insert code for Transitions which have an action 

defined) 

 Call the function toCwithNameProvider@CodeSnippetToCode on the CodeSnippet in the new line context 

 Note that there is an inconsistency because we have not yet added a NameProvider to our contexts which 

can be used as the parameter to the function 
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Implement actions for transitions 57 

 

 

 Add a new line context on the same line as before and choose 

Statemachine.generateNameProvider@TokenNameFunctions:NameProvider as selector of the context 

 Add another line context on the same line and choose the selector CodeSnippet:CodeSnippet (needed for the 

parameter matching) 

 Save the template and make sure that the code in Statemachine1Impl.hpp is generated and overwritten 
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Implement actions for transitions 58 

 

 

 Open  the file Statemachine1Impl.hpp and check that the code that increments the counter has been correctly 

inserted 

 Complete the generated classes by adding a member function initialize() and the missing variables (and 

probably adding the cases  for the missing enumeration values to make the compiler happy). 
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