
© 2010 actifsource GmbH, Switzerland - all rights reserved.

Tutorial

Code Snippet

© 2010 actifsource GmbH, Switzerland - all rights reserved.

Tutorial Actifsource Tutorial – Code Snippet
Required Time  120 Minutes

Prerequisites  Actifsource Tutorial – Installing Actifsource

 Actifsource Tutorial – Simple Service

 Actifsource Tutorial – Complex Service

 Actifsource Tutorial – Statemachine

Goal  Add conditional expression to a transition

 Add code as an action to a transition which will be executed together with the
transition

Topics covered  Code Snippet Editor

 Code templates to generate code from code snippets

Notation  To do
 Information

 Bold: Terms from actifsource or other technologies and tools

 Bold underlined: actifsource Resources

 Underlined: User Resources

 UnderlinedItalics: Resource Functions

 Monospaced: User input

 Italics: Important terms in current situation

Disclaimer The authors do not accept any liability arising out of the application or use of any
information or equipment described herein. The information contained within this
document is by its very nature incomplete. Therefore, the authors accept no
responsibility for the precise accuracy of the documentation contained herein. It
should be used rather as a guide and starting point.

Contact actifsource GmbH
Täfernstrasse 37
5405 Baden-Dättwil
Switzerland
www.actifsource.com

Trademark actifsource is a registered trademark of actifsource GmbH in Switzerland, the EU,
USA, and China. Other names appearing on the site may be trademarks of their
respective owners.

Compatibility Created with actifsource Version 5.8.5

http://www.actifsource.com/

© 2010 actifsource GmbH, Switzerland - all rights reserved.

Overview 3

 Create a meta-model for Statemachine, instantiate Statemachine and write a code template to generate a

simple implementation of your Statemachines in C++ as seen in the Actifsource Tutorial – Statemachine

 Add a Code Snippets with conditional expressions to Transition

 Create a Domain Diagram for an instance of Statemachine and show the conditions for Transitions in the

diagram

 Generate code for Statemachines that checks the associated condition before executing a transition

 Add a Code Snippet with an action to Transition and generate code that executes the action together with the

state transition

© 2010 actifsource GmbH, Switzerland - all rights reserved.

Part I: 4

Preparation

Setup a project com.actifsource.statemachine with a meta-model for Statemachine, create two instances of

Statemachine and implement a code template for Statemachine as seen in the Actifsource Tutorial – Statemachine:

 Prepare a new Actifsource Project com.actifsource.statemachine

 Create a meta-model for Statemachine

 Create two instances of type Statemachine, namely Statemachine1 and Statemachine2

 Write a code template StatemachineImpl for the type Statemachine

 Use the package structure shown above

© 2010 actifsource GmbH, Switzerland - all rights reserved.

Part II: 5

Implement conditional transitions

First, we import all the resources needed to enable the support of Code Snippets in our project:

 Select the project com.actifsource.statemachine and choose Project->Properties from the main menu

 In the properties dialog choose actifsource and go the Built-in Dependencies tab

 Click on Add Builtin

 In the dialog Select a built-in dependency choose CODESNIPPET and click on OK

© 2010 actifsource GmbH, Switzerland - all rights reserved.

Implement conditional transitions 6

 Close the Properties dialog by clicking on OK

© 2010 actifsource GmbH, Switzerland - all rights reserved.

Implement conditional transitions 7

We add a Code Snippet relation to class Transition:

 Open the class Transition in the Resource Editor

 Add a (third) property to the class

 Choose StructuredCodeSnippetRelation in the dialog Type Selection

© 2010 actifsource GmbH, Switzerland - all rights reserved.

Implement conditional transitions 8

 Insert condition as name of the relation

 Create a new CodeSnippetRelationAspect as shown above

 Choose Cardinality0_1 as subjectCardinality and as objectCardinality

 Create a new language statement by calling the Content Assist and choosing CMinusCondition

© 2010 actifsource GmbH, Switzerland - all rights reserved.

Implement conditional transitions 9

We add a new OwnRelation called variable to the class Statemachine:

 Open Transition in the ResourceEditor

 Add a new property and choose OwnRelation in the Type Selection dialog

 Insert variable as the name of the relation

 Choose new ch.actifsource.core.Class as the range with the support of the Content Assist

© 2010 actifsource GmbH, Switzerland - all rights reserved.

Implement conditional transitions 10

 Insert Variable as name of the newly created class, which is opened automatically in the Resource Editor

© 2010 actifsource GmbH, Switzerland - all rights reserved.

Implement conditional transitions 11

A conditional expression for a Transition should be able to use all Variables that are owned by the Statemachine of the

Transition as variables:

 Insert a RelationTokenProvider

 Define the Selector Transition.-transition.-state.counter which selects all Variables that are owned by the

Statemachine of the Transition

 Choose ch.actifsource.codesnippet.metamodel.TokenType.Variable as tokenType

© 2010 actifsource GmbH, Switzerland - all rights reserved.

Implement conditional transitions 12

We add a condition to the state transition triggered by the event start that restricts the number of times the

Statemachine can switch to the State Started:

 Open the instance Statemachine1 in the ResourceEditor

 Add two statements for variable to Statemachine1

 Choose startCounter as the name of the first and startLimit as the name of the second Variable

© 2010 actifsource GmbH, Switzerland - all rights reserved.

Implement conditional transitions 13

We add a conditional expression to the state transition triggered by the Event start in the State Initialized:

 Open the state Initialized in the Resource Editor and then open its Transition start

 Open the Code Snippet Editor by selecting the relation condition and pressing Enter

 Call the Content Assist in the Code Snippet Editor and choose startCounter

 Enter ' < ' in the Code Snippet Editor and call the Content Assist again

 Choose startLimit in the Content Assist

© 2010 actifsource GmbH, Switzerland - all rights reserved.

Implement conditional transitions 14

We enforce that the Statemachine can only switch a maximum of startLimit times to the State Started by adding the

same conditional expression also to the Transition triggered by the Event start in the State Stopped:

 Enter the conditional expression in the same way as on the previous page

© 2010 actifsource GmbH, Switzerland - all rights reserved.

Part II: 15

Create a Domain Diagram

We create a new Diagram Type called Statemachine in order to define properties of Domain Diagrams of Statemachines:

 Select the package com.actifsource.statemachine.generic and choose New -> Diagram Type

© 2010 actifsource GmbH, Switzerland - all rights reserved.

Create a Domain Diagram 16

 Enter Statemachine as name for the newly created DiagramType in the New DiagramType Wizard

 Choose com.actifsource.statemachine.generic.Statemachine as RootClass

© 2010 actifsource GmbH, Switzerland - all rights reserved.

Create a Domain Diagram 17

 Define allowedClass as com.actifsource.statemachine.generic.State

 Choose ShowPaletteEntry as paletteEntry

 Insert an allowedRelation of type AllowedIndirectRelation with selector State.transition.targetState

© 2010 actifsource GmbH, Switzerland - all rights reserved.

Create a Domain Diagram 18

Now we create a new Domain Diagram for Statemachine1 based on the newly created Diagram Type:

 Select com.actifsource.statemachine.specific and choose New -> Domain Diagram

© 2010 actifsource GmbH, Switzerland - all rights reserved.

Create a Domain Diagram 19

 Check the chosen settings in the open dialog and click Finish

© 2010 actifsource GmbH, Switzerland - all rights reserved.

Create a Domain Diagram 20

 Choose Select in the Palette of the Diagram Editor and arrange the States such that all transitions are visible

© 2010 actifsource GmbH, Switzerland - all rights reserved.

Create a Domain Diagram 21

Next, we will see how to display the conditional expressions associated with a Transition in the Domain Diagram. First,

we create a function that generates the displayed text from the conditional expression:

 Select the package com.actifsource.statemachine.generic and choose New -> FunctionSpace

© 2010 actifsource GmbH, Switzerland - all rights reserved.

Create a Domain Diagram 22

 Enter NameFunctions as name of the FunctionSpace

© 2010 actifsource GmbH, Switzerland - all rights reserved.

Create a Domain Diagram 23

 Create a new FunctionContext with typeRef com.actifsource.statemachine.generic.Transition

 Create a new function in the FunctionContext and choose TemplateFunction in the Type Selection dialog

© 2010 actifsource GmbH, Switzerland - all rights reserved.

Create a Domain Diagram 24

 Enter displayName as name of the TemplateFunction

 Open the TemplateFunction in the Template Function Editor by double-clicking on displayName in the Project

Explorer

© 2010 actifsource GmbH, Switzerland - all rights reserved.

Create a Domain Diagram 25

The function should display the name of the event triggering the Transition and in brackets the conditional expression if

there is one:

 Enter Transition.event.name in the TemplateEditor followed by '[]'

 Place the cursor inside the brackets and choose Insert ColumnContext from the menu

© 2010 actifsource GmbH, Switzerland - all rights reserved.

Create a Domain Diagram 26

 Choose Transition.condition as selector for the column context

 Enter CodeSnippet.displayCodeSnippetSingleLine@DisplayCodeSnippet in the column context. This function

outputs a string that represents the expression in the Code Snippet as entered by the user, i.e., without parsing

or processing it

© 2010 actifsource GmbH, Switzerland - all rights reserved.

Create a Domain Diagram 27

We will use the newly created function displayName to define a NameAspect for Transitions:

 Create a NameAspect with the Content Assist and choose TextSelectorAspectImplementation in the Select

Decoration Type dialog

© 2010 actifsource GmbH, Switzerland - all rights reserved.

Create a Domain Diagram 28

 Enter Transition.displayName@NameFunction as selector of the NameAspect, i.e., the name of the Transition

will be the output of the function we have defined before

© 2010 actifsource GmbH, Switzerland - all rights reserved.

Create a Domain Diagram 29

 Open the Statemachine1 Domain Diagram again and check that the Transitions are now displayed with their

name including the conditional expressions as specified above

© 2010 actifsource GmbH, Switzerland - all rights reserved.

Part III: 30

Generate code for conditional transitions

In this part, we will extend the template StatemachineImpl as implemented in the Actifsource Tutorial – Statemachine

such that the statemachine executes a state transition only if the associated condition is fulfilled:

 Open the template StatemachineImpl in the Template Editor

© 2010 actifsource GmbH, Switzerland - all rights reserved.

Generate code for conditional transitions 31

We write an if-statement with the conditional expression associated with a Transition as condition:

 Insert a new Line Context and write the selector Transition.condition for the newly created context

© 2010 actifsource GmbH, Switzerland - all rights reserved.

Generate code for conditional transitions 32

 Write an if-statement in the new line context and insert a call to the function toC@CodeSnippetToCode on the

CodeSnippet available in the this context as condition of the if-statement

 Add opening and closing braces around the existing assignment expression

© 2010 actifsource GmbH, Switzerland - all rights reserved.

Generate code for conditional transitions 33

 Open the generated files Statemachine1Impl.hpp (overwritten) and Statemachine2Impl.hpp (unchanged) and

inspect the changes.

© 2010 actifsource GmbH, Switzerland - all rights reserved.

Part III: 34

Customized variable names

 The built-in template functions that we used so far generate the name of variables (and also functions) by

calling simple name on the corresponding resource

 In this part we will change the generated variable names by adding a prefix to the variable names according to

our naming convention

© 2010 actifsource GmbH, Switzerland - all rights reserved.

Customized variable names 35

 Create a new Java source folder: select the project com.actifsource.statemachine and choose New -> Source

Folder from the menu

© 2010 actifsource GmbH, Switzerland - all rights reserved.

Customized variable names 36

 Insert aspects as name of the new folder

© 2010 actifsource GmbH, Switzerland - all rights reserved.

Customized variable names 37

 Create a new package com.actifsource.statemachine.generic in the aspects folder: select the aspects folder and

choose New -> Package from the menu

© 2010 actifsource GmbH, Switzerland - all rights reserved.

Customized variable names 38

 Select the package com.actifsource.statemachine.generic in the folder aspects and choose New -> Interface

from the menu

 Write IMyNameProvider as name of the new interface

 Choose ch.actifsource.codesnippet.metamodel.template.INameProvider as Extended interface

© 2010 actifsource GmbH, Switzerland - all rights reserved.

Customized variable names 39

 Select the package com.actifsource.statemachine.generic in the folder aspects and choose New -> Class from

the menu

 Write MyNameProviderLiteralAspect as name of the new class

 Choose ch.actifsource.core.model.aspects.impl.AbstractStatelessAspectImpl as Superclass

 Choose ch.actifsource.core.model.aspects.impl.IGenericLiteralAspect<IMyNameProvider> as Interface

 Click Finish

© 2010 actifsource GmbH, Switzerland - all rights reserved.

Customized variable names 40

 In the newly created class remove all TODO comments

 Write the statement return MyNameProvider.class; in the method getValueType()

 Write the statement return new Literal(arg0.toString());

© 2010 actifsource GmbH, Switzerland - all rights reserved.

Customized variable names 41

 Create a new Literal type: select the package com.actifsource.statemachine.generic in the folder asrc and

choose New -> Resource from the menu

 Choose the type ch.actifsource.core.Literal as Type of the new Resource

 Write MyNameProviderLiteral as Name of the new Resource

© 2010 actifsource GmbH, Switzerland - all rights reserved.

Customized variable names 42

 Open the new Literal in the Resource Editor

 Create a LiteralAspect with type JavaAspectImplementation and choose the class

com.actifsource.statemachine.generic.MyNameProviderLiteralAspect as className

 Let the MyNameProviderLiteral extend

ch.actifsource.codesnippet.metamodel.parsetree.template.NameProvider, which is the default NameProvider

and generates names by calling simpleName@BuiltIn

© 2010 actifsource GmbH, Switzerland - all rights reserved.

Customized variable names 43

 Create a new FunctionSpace: Select the package com.actifsource.statemachine.generic in the asrc folder and

choose New -> FunctionSpace

 Insert TokenNameFunctions as the name of the FunctionSpace and click Finish

© 2010 actifsource GmbH, Switzerland - all rights reserved.

Customized variable names 44

 Let the new FunctionSpace TokenNameFunctions extend from TokenToName

© 2010 actifsource GmbH, Switzerland - all rights reserved.

Customized variable names 45

 Open the FunctionSpace TokenNameFunctions in the Resource Editor

 Create a new FunctionContext with typeRef MyNameProviderLiteral

 Create a new function and choose TemplateLineFunction from the Type Selection dialog

© 2010 actifsource GmbH, Switzerland - all rights reserved.

Customized variable names 46

 Insert variableName as the name of the new TemplateLineFunction

 Create a parameter Param of type ClassType and with classRef ch.actifsource.core.Resource

 Insert m_Resource.simpleName@BuiltIn as text, i.e., the function appends the prefix "m_" to the output of

Resource.simpleName@Builtin

 Warning: Please choose the exact function name for variableName or functionName since these functions

are overwritten

mailto:Resource.simpleName@Builtin

© 2010 actifsource GmbH, Switzerland - all rights reserved.

Customized variable names 47

 Create a new FunctionContext with typeRef Statemachine

 Create a new function and choose JavaFunction from the Type Selection dialog

© 2010 actifsource GmbH, Switzerland - all rights reserved.

Customized variable names 48

 Insert generateNameProvider as name of the function

 Create a statement returnType of type LiteralType with literalRef MyNameProviderLiteral

© 2010 actifsource GmbH, Switzerland - all rights reserved.

Customized variable names 49

 Save the FunctionSpace TokenNameFunctions

 Open the newly generated file TokenNameFunctions.java in the Java Editor

 Write the statement return new IMyNameProvider(){} inside the protected region in the method body

of the method generateNameProvider

 Save the file

© 2010 actifsource GmbH, Switzerland - all rights reserved.

Customized variable names 50

 Open the template StatemachineImpl in the Template Editor

 Insert a new LineContext on the line after the case expressions

 Choose Transition.condition as the selector of the new context

© 2010 actifsource GmbH, Switzerland - all rights reserved.

Customized variable names 51

 Insert a new LineContext on the same line

 Choose Statemachine.generateNameProvider@TokenNameFunctions:NameProvider as selector of the new

context

 Write an if-statement with CodeSnippet.toCwithNameProvider@CodeSnippetToCode

 Note that there is an error on the edited line because the parameter to the function cannot be resolved

© 2010 actifsource GmbH, Switzerland - all rights reserved.

Customized variable names 52

 Insert a new line context on the same line and choose CodeSnippet:CodeSnippet (This dummy context allows

Actifsource to correctly and automatically resolve the parameter to the function from the contexts)

 Save the template and make sure that the code is generated

© 2010 actifsource GmbH, Switzerland - all rights reserved.

Customized variable names 53

 Open the file Statemachine1Impl.hpp and check that the variable names have been generated with the defined

prefix "m_"

© 2010 actifsource GmbH, Switzerland - all rights reserved.

Part III: 54

Implement actions for transitions

In this part, we will see how to add an action to a transition. We add the code corresponding to the action as a Code

Snippet to the model. This code will be executed together with the transition:

 Open the class Transition in the Resource Editor and add a Code Snippet relation as already seen in Part II

 Insert action as name of the StructuredCodesnippetRelation, choose subjectCardinality and objectCardinality

Cardinality0_1

 Create a RelationTokenProvider with selector Transition.-transition.-state.variable and tokenType Variable

 Choose the language CMinus

© 2010 actifsource GmbH, Switzerland - all rights reserved.

Implement actions for transitions 55

We will now increment the startCounter each time that we switch to the State Started:

 Open Statemachine1 in the Resource Editor

 Add an action to the State Initialized and insert the code startCounter = startCounter + 1; into

the Code Snippet Editor

 Add an action to the State Stopped and insert the code startCounter = startCounter + 1; into the

Code Snippet Editor

© 2010 actifsource GmbH, Switzerland - all rights reserved.

Implement actions for transitions 56

 Open the template StatemachineImpl in the Template Editor

 Add a new line context after the assignment statement that updates the state

 Choose Transition.action as the selector of the state (to insert code for Transitions which have an action

defined)

 Call the function toCwithNameProvider@CodeSnippetToCode on the CodeSnippet in the new line context

 Note that there is an inconsistency because we have not yet added a NameProvider to our contexts which

can be used as the parameter to the function

© 2010 actifsource GmbH, Switzerland - all rights reserved.

Implement actions for transitions 57

 Add a new line context on the same line as before and choose

Statemachine.generateNameProvider@TokenNameFunctions:NameProvider as selector of the context

 Add another line context on the same line and choose the selector CodeSnippet:CodeSnippet (needed for the

parameter matching)

 Save the template and make sure that the code in Statemachine1Impl.hpp is generated and overwritten

© 2010 actifsource GmbH, Switzerland - all rights reserved.

Implement actions for transitions 58

 Open the file Statemachine1Impl.hpp and check that the code that increments the counter has been correctly

inserted

 Complete the generated classes by adding a member function initialize() and the missing variables (and

probably adding the cases for the missing enumeration values to make the compiler happy).

© 2010 actifsource GmbH, Switzerland - all rights reserved.

